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Introduction Improved Gaussian product inequalities Proof and extension

Inequalities involving Gaussian distributions are related to
various fields and have attracted great concern.

Royen (14): Gaussian correlation inequality.

For any closed symmetric sets K,L in Rd and any centered
Gaussian measure µ we have

µ(K ∩ L) ≥ µ(K)µ(L).
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Gaussian product conjecture

For any d-dimensional real-valued centered Gaussian random
vector (X1, . . . ,Xd),

E[X2m
1 X2m

2 · · ·X2m
d ] ≥ E[X2m

1 ]E[X2m
2 ] · · ·E[X2m

d ], m ∈ N.
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Real polarization problem

For any d ≥ 2, and any collection x1, . . . , xd of unit vectors in Rd,
there exists a unit vector v ∈ Rd such that

|〈v, x1〉 · · · 〈v, xd〉| ≥ d−d/2.

As a consequence, for d ≥ 2 and for every real Hilbert space H
of dimensional at least d, one has that

inf{M > 0 : ∀u1, . . . , ud ∈ S(H),∃v ∈ S(H) : |〈u1, v〉 · · · 〈ud, v〉| ≥ M−1}= dd/2,

and S(H) := {u ∈ H : ‖u‖H = 1}.
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U-conjecture

Let X = (X1, . . . ,Xd) be a Gaussian vector such that
X ∼ N (0, Id). If two polynomials P(X) and Q(X) are
independent, then they are unlinked.

P(X) and Q(X) are said to be unlinked if there exist an isometry
T : Rd → Rd and an index r ∈ {1, . . . , d − 1} such that
P(X) ∈ R[Y1, . . . ,Yr] and Q(X) ∈ R[Yr+1, . . . ,Yn], where
Y = (Y1, . . . ,Yd) = T(X).
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Li and Wei (12): Improved version of the Gaussian product
conjecture:

E

 d∏
j=1

|Xj|αj

 ≥ d∏
j=1

E[|Xj|αj ],

where αj, j = 1, 2, . . . , d, are nonnegative real numbers.

No universal method is available for proving the Gaussian
product conjecture.

Frenkel (08) used algebraic methods to give proof for the case
αj = 2 (m = 1).
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Wei (14) used integral representations to prove that for
αj ∈ (−1, 0),

E

 d∏
j=1

|Xj|αj

 ≥ E

 k∏
j=1

|Xj|αj

E

 d∏
j=k+1

|Xj|αj

 .
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Stronger version of Gaussian product inequality does not
necessarily hold in general.

Let U and V be independent standard Gaussian random
variables. Since

E
[
U2(U + 2V)2(U − 2V)2] = E

[
U6 − 8U4V2 + 16U2V4] = 39,

and

E[U2]E
[
(U + 2V)2(U − 2V)2] = E

[
U4 − 8U2V2 + 16V4] = 43,

we have

E
[
U2(U + 2V)2(U − 2V)2] < E[U2]E

[
(U + 2V)2(U − 2V)2] .
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Ornstein-Uhlenbeck operator on Rd:

Lf = ∆f − 〈x,∇f 〉.

γd = (2π)−d/2 exp{−|x|2/2}dx.

Spectrum(−L) = N.

{Hk : k = 0, 1, . . . }: Hermite polynomials on R.

Ker(L+ kI): k-th eigenspace of L:

F(x1, . . . , xd) =
∑

i1+···+id=k

α(i1, . . . , id)

d∏
j=1

Hij(xj).
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Malicet, Nourdin, Peccati and Poly (16) Fix n ≥ 1, let
k1, . . . , kn ≥ 1, and consider polynomials Fi ∈ Ker(L+ kiI),
i = 1, . . . , n. Then,∫

Rd

(
n∏

i=1

F2
i

)
dγd ≥

n∏
i=1

∫
Rd

F2
i dγd.

The equality holds if and only if the Fi’s are jointly independent.
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Karlin and Rinott (81) Gaussian product inequality holds for
X = (X1, . . . ,Xd) if the density of |X| = (|X1|, . . . , |Xd|) satisfies
the condition of multivariate totally positive of order 2 (MTP2).

For any non-degenerate 2-dimensional centered Gaussian
random vector (X1,X2), (|X1|, |X2|) has a MTP2 density.

For a high dimensional (d ≥ 3) centered Gaussian random
vector X, the density of |X| is not always MTP2.
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Hu, Lan and Sun (19) For any 3-dimensional centered
Gaussian random vector (X,Y,Z),

E
[
X2m Y2m Z2m] ≥ E[X2m]E[Y2m]E[Z2m], ∀m ∈ N.

The equality holds if and only if X,Y,Z are independent.

Intrinsic connection between moments of Gaussian
distributions and the Gaussian hypergeometric functions.

New combinatorial identities and inequalities and more
accurate lower bounds for some special cases.
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For α ∈ R, define

(α)n =

{
α(α+ 1) · · · (α+ n− 1), n ≥ 1,
1, n = 0, α 6= 0.

n! = (1)n.

(2n− 1)!! = 2n ·
(

1
2

)
n
, n ≥ 0.

For 0 ≤ k ≤ n,(
n
k

)
=

n!

(n− k)!k!
=

(1)n

(1)n−k(1)k
=

(1 + n− k)k

(1)k
.
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Define(
n
k

)
1
2

:=

(1
2 + n− k

)
k(1

2

)
k

=

( 1
2

)
n(1

2

)
n−k

(1
2

)
k

=
(2n− 1)!!

(2n− 2k − 1)!!(2k − 1)!!
.

(n
k

)
1
2

may not be an integer. E.G.
(4

2

)
1
2

= 35
3 and

(6
3

)
1
2

= 231
5 .

(
k + r

r

)
1
2

≥
(

2
1

)
1
2

= 3, ∀k, r ∈ N.
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Theorem Let X and Y be independent centered Gaussian
random variables. Then for any r ∈ N and n,m ∈ N ∪ {0},

E
[
X2mY2n(X2 − Y2)2r] ≥ ((m ∧ n) + r

r

)
1
2

E[X2m]E[Y2n]
[
E(X + Y)2r]2 .

The equality holds if and only if m = n and E[X2] = E[Y2].

(X2− Y2)2r = (X + Y)2r(X− Y)2r and E[(X + Y)2r] = E[(X− Y)2r].
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Let a2 = E[X2] and b2 = E[Y2]. Define

U =
X
a
, V =

Y
b
.

Then U,V are independent standard Gaussian r.v.s.

Suppose that m ≥ n. Then(
(m ∧ n) + r

r

)
1
2

=
(2n + 2r − 1)!!

(2n− 1)!!(2r − 1)!!
, E[(X+Y)2r] = (2r−1)!!(a2+b2)r.

E
[
U2mV2n(a2U2 − b2V2)2r] ≥ (2m−1)!!(2n+2r−1)!!(2r−1)!!(a2+b2)2r.
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E
[
U2mV2n (γU2 − (1− γ)V2)2r

]
≥ 2m+n+2r

(
1
2

)
m

(
1
2

)
n+r

(
1
2

)
r
, 0 < γ < 1.

For γ ∈ R, define

Gm,n(γ) = E
[
U2mV2n (γU2 − (1− γ)V2)2r

]
,

and
Hm,n(γ) = Gm,n(γ)− 2m+n+2r

(
1
2

)
m

(
1
2

)
n+r

(
1
2

)
r
.
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To prove the improved Gaussian product inequality, it is
sufficient to verify

Hn,n

(
1
2

)
= 0; Hn,n(γ) > 0, γ ∈

(
0,

1
2

)⋃(
1
2
, 1
)

;

Hm,n(γ) > 0, γ ∈ (0, 1), m > n.

The proofs are based on the classical Gaussian
hypergeometric functions:

F(a, b, c; z) =

∞∑
n=0

(a)n(b)n

(c)n
· zn

n!
, |z| < 1.
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The symmetric case: Hn,n(γ) ≥ 0

d2Hn,n

dγ2 (γ) = 2r(2r − 1)E
[
U2nV2n (γ(U2 + V2)− V2)2r−2

(U2 + V2)2
]
> 0,

dHn,n

dγ

(
1
2

)
= 2rE

[
U2nV2n

(
U2 − V2

2

)2r−1

(U2 + V2)

]
= 0.

Then, Hn,n(γ) reaches its unique minimum at γ = 1
2 . Hence it is

sufficient to verify that Hn,n
( 1

2

)
= 0, i.e.,

2r∑
i=0

(−1)i
(

2r
i

)(
1
2

)
n+2r−i

(
1
2

)
n+i

= 22r
(

1
2

)
n

(
1
2

)
r

(
1
2

)
n+r

.
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The symmetric case: Hn,n(γ) ≥ 0

Lemma Let l, r ∈ N satisfying l ≤ r. Then we have

l−1∑
i=0

(2r
i

)(l−1
i

)(2r−l
i

) =
(2r)!

2r!r!
(2r−l

r

) .
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The symmetric case: Hn,n(γ) ≥ 0

l−1∑
i=0

(2r
i

)(l−1
i

)(2r−l
i

)
=

l−1∑
i=0

(−2r)i(1− l)i

(l− 2r)i · i!
(−1)i

=

∞∑
i=0

(−2r)i(1− l)i

(l− 2r)i · i!
(−1)i

= lim
ε→0

∞∑
i=0

(−2(r + ε))i(1− l)i

(l− 2(r + ε))i · i!
(−1)i

= lim
ε→0

lim
z→−1

∞∑
i=0

(−2(r + ε))i(1− l)i

(l− 2(r + ε))i · i!
zi
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The symmetric case: Hn,n(γ) ≥ 0

= lim
ε→0

lim
z→−1

F(−2(r + ε), 1− l, (l− 2(r + ε)); z)

= lim
ε→0

Γ(l− 2(r + ε))Γ(1− (r + ε))

Γ(1− 2(r + ε))Γ(l− (r + ε))

= lim
ε→0

(−(r + ε)) · · · (1− 2(r + ε))

(l− (r + ε)− 1) · · · (l− 2(r + ε))

=
(2r − 1) · · · r

(2r − l) · · · (r + 1− l)

=
(2r − 1)!

(r − 1)!r!
(2r−l

r

)
=

(2r)!

2r!r!
(2r−l

r

) .
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The symmetric case: Hn,n(γ) ≥ 0

Lemma Let l, r ∈ N satisfying l ≤ r. Then we have

2r!(l− 1)!(2r − 2l + 1)!

(2r)!(r − l)!

l−1∑
i=0

(
2r
i

)(
2r − l− i

2r − 2l + 1

)
= 1.

Corollary Let l, r ∈ N satisfying l ≤ r. Then we have

l−1∑
i=0

(l−1
i

)(2r−i
l

) =
1

2
(r

l

) .
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The symmetric case: Hn,n(γ) ≥ 0

Proof of identity:

2r∑
i=0

(−1)i
(

2r
i

)(
1
2

)
n+2r−i

(
1
2

)
n+i

= 22r
(

1
2

)
n

(
1
2

)
r

(
1
2

)
n+r

.

Equivalent version:{
2r!

(2r)!

r−1∑
i=0

(−1)i
(

2r
i

)(
1
2

+ n + r
)

r−i

(
1
2

+ n
)

i

}
+

(−1)r

r!

(
1
2

+ n
)

r
= 1.
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The symmetric case: Hn,n(γ) ≥ 0

Define an r-th degree polynomial L by

L(x) =

{
2r!

(2r)!

r−1∑
i=0

(−1)i
(

2r
i

)
(x + 1 + r)r−i (x + 1)i

}
+

{
(−1)r

r!
(x + 1)r

}
− 1.

L(0) = 0. From the previous lemma, we get

L(−l) = 0, l ∈ {1, 2, . . . , r}.

Hence the r-th degree polynomial L has at least (r + 1) roots,
which implies that L ≡ 0.

L
(

n− 1
2

)
= 0.
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The asymmetric case: Hm,n(γ) > 0

Gm,n(γ) = E
[
U2mV2n (γ(U2 + V2)− V2)2r

]
, γ ∈ R.

Gm,n is a strictly convex function on R and hence reaches its
minimum at some γm ∈ (0, 1) with d

dγGm,n(γm) = 0.

Lemma For 0 < γ < 1,

Gm,n (γ) = 2m+n+2r
(

1
2

)
m

(
1
2

)
n+2r

F
(
−2r,−m− n− 2r,

1
2
− n− 2r; γ

)
.

Pfaff transformation

F(−2r,
1
2

+m,
1
2
−n−2r;−z) = (1+z)2rF(−2r,−m−n−2r,

1
2
−n−2r;

z
1 + z

).
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The asymmetric case: Hm,n(γ) > 0

Gauss’ contiguous relations of hypergeometric functions.
Consider the six functions

F(a± 1, b, c; z), F(a, b± 1, c; z), F(a, b, c± 1; z),

which are called contiguous to F(a, b, c; z).

c(1− z)F − cF(a− 1) + (c− b)zF(c + 1) = 0,

(b− a)F + aF(a + 1)− bF(b + 1) = 0,

[c− 2b + (b− a)z]F + b(1− z)F(b + 1)− (c− b)F(b− 1) = 0,

d
dz

F(a, b, c; z) =
ab
c

F(a + 1, b + 1, c + 1; z).
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The asymmetric case: Hm,n(γ) > 0

For 0 < γ < 1, define

Bm(γ) = F
(
−2r,−m− n− 2r,

1
2
− n− 2r; γ

)
.

Bm+1 reaches its minimum at some γm+1 ∈ (0, 1) with
d

dγBm+1(γm+1) = 0.

Lemma Let m, n ∈ N ∪ {0}, r ∈ N and γm+1 ∈ (0, 1) be the
minimum point of Bm+1. Then

Bm+1(γm+1) = Bm(γm+1).
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The asymmetric case: Hm,n(γ) > 0

Proof of Hm,n(γ) > 0 for m > n:

Hm,n(γ) > 0 can be written as

Gm,n(γ) > 2m+n+2r
(

1
2

)
m

(
1
2

)
n+r

(
1
2

)
r
.

On the other hand,

Gm,n (γ) = 2m+n+2r
(

1
2

)
m

(
1
2

)
n+2r

Bm(γ).

Hence, we need show that

Bm(γ) >

(
1
2

)
n+r

(
1
2

)
r

(
1
2

)−1

n+2r
=

(
n + 2r

r

)−1

1
2

.
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The asymmetric case: Hm,n(γ) > 0

In the symmetric case we have proved that

Bn(γ) >

(
n + 2r

r

)−1

1
2

, γ 6= 1
2
.

By the previous lemma, we get

Bn+1(γ) ≥ Bn+1(γn+1) = Bn(γn+1) >

(
n + 2r

r

)−1

1
2

.

Suppose the inequality holds for m = k ≥ n + 1. Using the
previous lemma again, we get

Bk+1(γ) ≥ Bk+1(γk+1) = Bk(γk+1) >

(
n + 2r

r

)−1

1
2

,

Therefore, the proof is complete by induction.
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Lemma Suppose that (X,Y,Z) is a centered Gaussian random
vector such that αX + βY + γZ = 0 for some constants α, β, γ
that are not all zero. Then for any m, n ∈ N,

E
[
X2m Y2m Z2n] > E[X2m]E[Y2m]E[Z2n].

The proof is based on the improved Gaussian product
inequality given above.
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We assume without loss of generality that Z = X − Y and
E[Z2] = 1.

Define
a = E[XZ], b = E[YZ],

and

U = X − aZ = Y − bZ, V =
√
|ab|Z.

To prove the desired inequality, it is sufficient to verify that for
0 ≤ i ≤ m,

E
[
V2n+2iU2i(V2 − U2)2m−2i] > (m

i

)
1
2

E[V2n+2i]E[U2i]
{

E[(V + U)2m−2i]
}2
.
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Theorem Let (X,Y,Z) be a 3-dimensional centered Gaussian
random vector. Then for any m, n ∈ N,

E
[
X2m Y2m Z2n] ≥ E[X2m]E[Y2m]E[Z2n].
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Proof. Define

Z0 = E [Z|X,Y] , Z1 = Z − Z0.

Then,

Z2n = (Z0 + Z1)2n =

2n∑
i=0

(
2n
i

)
Z2n−i

0 Zi
1.

Note that Z1 is independent of X,Y. Hence

E
[
Z2n−i

0 Zi
1|X,Y

]
= Z2n−i

0 E
[
Zi

1
]
,

which is equal to zero for odd i.

E
[
Z2n|X,Y

]
=

n∑
i=0

(
2n
2i

)
Z2n−2i

0 E
[
Z2i

1
]
.

Wei Sun Concordia University

Gaussian Product Inequality



Introduction Improved Gaussian product inequalities Proof and extension

Note that Z0 = αX + βY holds for some α, β ∈ R. Then, it follow
from the previous lemma that

E
[
X2m Y2m Z2n−2i

0

]
≥ E[X2m]E[Y2m]E[Z2n−2i

0 ].

Thus,

E
[
X2m Y2m Z2n] = E

[
E
[
Z2n|X,Y

]
· X2mY2m]

=

n∑
i=0

(
2n
2i

)
E
[
X2m Y2mZ2n−2i

0

]
E[Z2i

1 ]

≥
n∑

i=0

(
2n
2i

)
E[X2m]E[Y2m]E[Z2n−2i

0 ]E[Z2i
1 ]

= E[X2m]E[Y2m]

n∑
i=0

(
2n
2i

)
E
[
Z2n−2i

0 Z2i
1

]
= E[X2m]E[Y2m]E

[
(Z0 + Z1)2n].
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