The Three-Dimensional Gaussian Product Inequality

Wei Sun

Concordia University Montreal, Canada

based on joint work with Ze-Chun Hu and Guolie Lan

4 0 8

Wei Sun Concordia University

 Ω

- **2 [Improved Gaussian product inequalities for special](#page-16-0) [cases](#page-16-0)**
	- **•** [The symmetric case:](#page-23-0) $H_{n,n}(\gamma) > 0$
	- **•** [The asymmetric case:](#page-30-0) $H_{m,n}(\gamma) > 0$
- **3 [Proof of 3-D Gaussian product inequality and extension](#page-35-0)**

つくへ

← ロ ▶ ← 何 ▶

 \rightarrow \equiv \rightarrow

2 [Improved Gaussian product inequalities for special](#page-16-0) [cases](#page-16-0)

- **•** [The symmetric case:](#page-23-0) $H_{n,n}(\gamma) > 0$
- [The asymmetric case:](#page-30-0) $H_{mn}(\gamma) > 0$

3 [Proof of 3-D Gaussian product inequality and extension](#page-35-0)

Wei Sun Concordia University

つくへ

← ロ ≯ ← イ 同 →

- **•** [The symmetric case:](#page-23-0) $H_{n,n}(\gamma) > 0$
- [The asymmetric case:](#page-30-0) $H_{mn}(\gamma) > 0$

3 [Proof of 3-D Gaussian product inequality and extension](#page-35-0)

つくへ

← ロ ≯ ← イ 同 →

- 4 国 ト 3

- **2 [Improved Gaussian product inequalities for special](#page-16-0) [cases](#page-16-0)**
	- **•** [The symmetric case:](#page-23-0) $H_{n,n}(\gamma) > 0$
	- **•** [The asymmetric case:](#page-30-0) $H_{m,n}(\gamma) > 0$
- **3 [Proof of 3-D Gaussian product inequality and extension](#page-35-0)**

つくへ

≮ロ ▶ ⊀ 何 ▶ ⊀ ヨ ▶ ⊀

Inequalities involving Gaussian distributions are related to various fields and have attracted great concern.

Royen (14): Gaussian correlation inequality.

For any closed symmetric sets K, L in \mathbb{R}^d and any centered Gaussian measure μ we have

 $\mu(K \cap L) \geq \mu(K)\mu(L).$

Wei Sun Concordia University

 Ω

イロメ イ母メ イヨメ イヨメ

Gaussian product conjecture

For any *d*-dimensional real-valued centered Gaussian random vector (X_1, \ldots, X_d) ,

$$
\mathbf{E}[X_1^{2m}X_2^{2m}\cdots X_d^{2m}] \geq \mathbf{E}[X_1^{2m}]\mathbf{E}[X_2^{2m}]\cdots \mathbf{E}[X_d^{2m}], \quad m \in \mathbb{N}.
$$

Wei Sun Concordia University

∢ロ→ ∢母→ ∢∃→ ∢∃→

 QQ

Real polarization problem

For any $d \geq 2$, and any collection x_1, \ldots, x_d of unit vectors in \mathbb{R}^d , there exists a unit vector $v \in \mathbb{R}^d$ such that

 $|\langle v, x_1 \rangle \cdots \langle v, x_d \rangle| \geq d^{-d/2}.$

As a consequence, for $d \geq 2$ and for every real Hilbert space $\mathcal H$ of dimensional at least *d*, one has that

 $\inf\{M > 0 : \forall u_1, \ldots, u_d \in S(\mathcal{H}), \exists v \in S(\mathcal{H}) : |\langle u_1, v \rangle \cdots \langle u_d, v \rangle| \geq M^{-1}\} = d^{d/2},$

and $S(H) := \{u \in H : ||u||_{\mathcal{H}} = 1\}.$

Wei Sun Concordia University

 209

∢ロ→ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

U-conjecture

Let $X = (X_1, \ldots, X_d)$ be a Gaussian vector such that *X* ∼ $\mathcal{N}(0, I_d)$. If two polynomials $P(X)$ and $Q(X)$ are independent, then they are unlinked.

 $P(X)$ and $Q(X)$ are said to be unlinked if there exist an isometry $T:\mathbb{R}^d \rightarrow \mathbb{R}^d$ and an index $r \in \{1,\ldots,d-1\}$ such that $P(X) \in \mathbb{R}[Y_1, \ldots, Y_r]$ and $Q(X) \in \mathbb{R}[Y_{r+1}, \ldots, Y_n]$, where $Y = (Y_1, \ldots, Y_d) = T(X).$

Wei Sun Concordia University

つくへ

∢ロ→ ∢母→ ∢∃→ ∢∃→

イロト イ押 トイヨ トイヨ トー

 Ω

Li and Wei (12): Improved version of the Gaussian product conjecture:

$$
\mathbf{E}\left[\prod_{j=1}^d |X_j|^{\alpha_j}\right] \geq \prod_{j=1}^d \mathbf{E}[|X_j|^{\alpha_j}],
$$

where $\alpha_j, j=1,2,\ldots,d,$ are nonnegative real numbers.

No universal method is available for proving the Gaussian product conjecture.

Frenkel (08) used algebraic methods to give proof for the case $\alpha_i = 2$ (*m* = 1).

Wei Sun Concordia University

Wei (14) used integral representations to prove that for $\alpha_j \in (-1,0),$

$$
\mathbf{E}\left[\prod_{j=1}^d |X_j|^{\alpha_j}\right] \geq \mathbf{E}\left[\prod_{j=1}^k |X_j|^{\alpha_j}\right] \mathbf{E}\left[\prod_{j=k+1}^d |X_j|^{\alpha_j}\right].
$$

∍ **Wei Sun Concordia University**

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Stronger version of Gaussian product inequality does not necessarily hold in general.

Let *U* and *V* be independent standard Gaussian random variables. Since

$$
\mathbf{E}\left[U^2(U+2V)^2(U-2V)^2\right] = \mathbf{E}\left[U^6 - 8U^4V^2 + 16U^2V^4\right] = 39,
$$

and

$$
\mathbf{E}[U^2]\mathbf{E}[(U+2V)^2(U-2V)^2] = \mathbf{E}[U^4 - 8U^2V^2 + 16V^4] = 43,
$$

we have

$$
\mathbf{E}\left[U^2(U+2V)^2(U-2V)^2\right] < \mathbf{E}[U^2]\mathbf{E}\left[(U+2V)^2(U-2V)^2\right].
$$

Wei Sun Concordia University

 Ω

イロメ イ母メ イヨメ イヨメ

Ornstein-Uhlenbeck operator on \mathbb{R}^d :

 $\mathcal{L}f = \Delta f - \langle x, \nabla f \rangle.$

$$
\gamma_d = (2\pi)^{-d/2} \exp\{-|x|^2/2\} dx.
$$

Spectrum($-\mathcal{L}$) = N.
 $\{H_k : k = 0, 1, ...\}$: Hermite polynomials on R.
Ker($\mathcal{L} + kI$): *k*-th eigenspace of \mathcal{L} :

$$
F(x_1,...,x_d) = \sum_{i_1+...+i_d=k} \alpha(i_1,...,i_d) \prod_{j=1}^d H_{i_j}(x_j).
$$

∍ **Wei Sun Concordia University**

 QQ

 $\mathcal{A} \sqsubseteq \mathcal{F} \rightarrow \mathcal{A} \bigoplus \mathcal{F} \rightarrow \mathcal{A} \sqsubseteq \mathcal{F} \rightarrow \mathcal{A} \sqsubseteq \mathcal{F}$

Malicet, Nourdin, Peccati and Poly (16) Fix *n* ≥ 1, let $k_1, \ldots, k_n \geq 1$, and consider polynomials $F_i \in \text{Ker}(\mathcal{L} + k_i I)$, $i = 1, \ldots, n$. Then,

$$
\int_{\mathbb{R}^d} \left(\prod_{i=1}^n F_i^2 \right) d\gamma_d \ge \prod_{i=1}^n \int_{\mathbb{R}^d} F_i^2 d\gamma_d.
$$

The equality holds if and only if the F_i 's are jointly independent.

Wei Sun Concordia University

 Ω

∢ロ→ ∢母→ ∢∃→ ∢∃→

Karlin and Rinott (81) Gaussian product inequality holds for $X = (X_1, \ldots, X_d)$ if the density of $|X| = (|X_1|, \ldots, |X_d|)$ satisfies the condition of multivariate totally positive of order 2 $(MTP₂)$.

For any non-degenerate 2-dimensional centered Gaussian random vector (X_1, X_2) , $(|X_1|, |X_2|)$ has a MTP₂ density.

For a high dimensional (*d* ≥ 3) centered Gaussian random vector X, the density of $|X|$ is not always MTP₂.

つくへ

イロメ イ母メ イヨメ イヨメ

Hu, Lan and Sun (19) For any 3-dimensional centered Gaussian random vector (*X*, *Y*, *Z*),

> $\mathbf{E}\left[X^{2m} \, Y^{2m} Z^{2m} \right] \geq \mathbf{E}[X^{2m}] \mathbf{E}[Y^{2m}] \mathbf{E}[Z^{2m}]$ $\forall m \in \mathbb{N}$.

The equality holds if and only if *X*, *Y*, *Z* are independent.

Intrinsic connection between moments of Gaussian distributions and the Gaussian hypergeometric functions.

New combinatorial identities and inequalities and more accurate lower bounds for some special cases.

 Ω

イロメ イ母メ イヨメ イヨメ

1 [Introduction](#page-4-0)

2 [Improved Gaussian product inequalities for special](#page-16-0) [cases](#page-16-0)

- **•** [The symmetric case:](#page-23-0) $H_{n,n}(\gamma) > 0$
- **•** [The asymmetric case:](#page-30-0) $H_{m,n}(\gamma) > 0$

3 [Proof of 3-D Gaussian product inequality and extension](#page-35-0)

つくへ

イロメス 何 メスミメス 手

For $\alpha \in \mathbb{R}$, define

$$
(\alpha)_n = \begin{cases} \alpha(\alpha+1)\cdots(\alpha+n-1), & n \ge 1, \\ 1, & n = 0, \ \alpha \ne 0. \end{cases}
$$

 $n! = (1)_n$.

$$
(2n-1)!! = 2n \cdot \left(\frac{1}{2}\right)_n, \quad n \ge 0.
$$

For $0 \le k \le n$, *n k* $= \frac{n!}{(n+1)!}$ $\frac{n!}{(n-k)!k!} = \frac{(1)_n}{(1)_{n-k}}$ $\frac{(1)_n}{(1)_{n-k}(1)_k} = \frac{(1+n-k)_k}{(1)_k}$ $\frac{n}{(1)_k}$

Wei Sun Concordia University

 QQ

イロト イ何 トイヨ トイヨト

Define

$$
\binom{n}{k}_{\frac{1}{2}} := \frac{\left(\frac{1}{2}+n-k\right)_k}{\left(\frac{1}{2}\right)_k} = \frac{\left(\frac{1}{2}\right)_n}{\left(\frac{1}{2}\right)_{n-k}\left(\frac{1}{2}\right)_k} = \frac{(2n-1)!!}{(2n-2k-1)!!(2k-1)!!}.
$$

 $\binom{n}{k}$ $\binom{n}{k}_{\frac{1}{2}}$ may not be an integer. E.G. $\binom{4}{2}$ $\binom{4}{2}$ $\frac{1}{2}$ = $\frac{35}{3}$ $\frac{35}{3}$ and $\binom{6}{3}$ $\binom{6}{3}$ _{$\frac{1}{2}$} = $\frac{231}{5}$ $\frac{31}{5}$.

$$
\binom{k+r}{r}_{\frac{1}{2}} \geq \binom{2}{1}_{\frac{1}{2}} = 3, \quad \forall k, r \in \mathbb{N}.
$$

Wei Sun Concordia University

 2990

 $\mathcal{A} \sqsubseteq \mathcal{F} \rightarrow \mathcal{A} \bigoplus \mathcal{F} \rightarrow \mathcal{A} \sqsubseteq \mathcal{F} \rightarrow \mathcal{A} \sqsubseteq \mathcal{F}$

Theorem Let *X* and *Y* be independent centered Gaussian random variables. Then for any $r \in \mathbb{N}$ and $n, m \in \mathbb{N} \cup \{0\},$

$$
\mathbf{E}\left[X^{2m}Y^{2n}(X^2-Y^2)^{2r}\right] \geq {\binom{(m\wedge n)+r}{r}}_{\frac{1}{2}}\mathbf{E}[X^{2m}]\mathbf{E}[Y^{2n}]\left[\mathbf{E}(X+Y)^{2r}\right]^2.
$$

The equality holds if and only if $m = n$ and $\mathbf{E}[X^2] = \mathbf{E}[Y^2].$

$$
(X^2 - Y^2)^{2r} = (X + Y)^{2r}(X - Y)^{2r}
$$
 and $\mathbf{E}[(X + Y)^{2r}] = \mathbf{E}[(X - Y)^{2r}].$

Wei Sun Concordia University

 Ω

化重新润滑

← ロ ≯ ← イ 同 →

Let
$$
a^2 = \mathbb{E}[X^2]
$$
 and $b^2 = \mathbb{E}[Y^2]$. Define

$$
U=\frac{X}{a},\quad V=\frac{Y}{b}.
$$

Then *U*, *V* are independent standard Gaussian r.v.s.

Suppose that $m > n$. Then

$$
\binom{(m\wedge n)+r}{r}_{\frac{1}{2}}=\frac{(2n+2r-1)!!}{(2n-1)!!(2r-1)!!},\quad \mathbf{E}[(X+Y)^{2r}]=(2r-1)!!(a^2+b^2)^r.
$$

 $\mathbf{E}\left[U^{2m}V^{2n}(a^2U^2-b^2V^2)^{2r}\right] \geq (2m-1)!!(2n+2r-1)!!(2r-1)!!(a^2+b^2)^{2r}.$

э **Wei Sun Concordia University**

 QQ

メロメメ 御 メメ 君 メメ 君 メー

$$
\mathbf{E}\left[U^{2m}V^{2n}\left(\gamma U^2-(1-\gamma)V^2\right)^{2r}\right] \geq 2^{m+n+2r}\left(\frac{1}{2}\right)_m\left(\frac{1}{2}\right)_{n+r}\left(\frac{1}{2}\right)_r, \ 0<\gamma<1.
$$

For $\gamma \in \mathbb{R}$, define

$$
G_{m,n}(\gamma) = \mathbf{E}\left[U^{2m}V^{2n}(\gamma U^2 - (1-\gamma)V^2)^{2r}\right],
$$

and

$$
H_{m,n}(\gamma) = G_{m,n}(\gamma) - 2^{m+n+2r} \left(\frac{1}{2}\right)_m \left(\frac{1}{2}\right)_{n+r} \left(\frac{1}{2}\right)_r.
$$

Þ **Wei Sun Concordia University**

メロメメ 御 メメ 君 メメ 君 メ

 299

To prove the improved Gaussian product inequality, it is sufficient to verify

$$
H_{n,n}\left(\frac{1}{2}\right)=0;\quad H_{n,n}(\gamma)>0,\quad \gamma\in\left(0,\frac{1}{2}\right)\bigcup\left(\frac{1}{2},1\right);
$$

$$
H_{m,n}(\gamma)>0,\quad \gamma\in(0,1),\,m>n.
$$

The proofs are based on the classical Gaussian hypergeometric functions:

$$
F(a, b, c; z) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(c)_n} \cdot \frac{z^n}{n!}, \quad |z| < 1.
$$

Wei Sun Concordia University

 Ω

∢ロ→ ∢母→ ∢∃→ ∢∃→

[Introduction](#page-4-0)
Introduction
Introduction
Introduction
Introduction

[The symmetric case:](#page-23-0) $H_{n,n}(\gamma) > 0$

$$
\frac{d^2H_{n,n}}{d\gamma^2}(\gamma) = 2r(2r-1)\mathbf{E}\left[U^{2n}V^{2n}\left(\gamma(U^2+V^2) - V^2\right)^{2r-2}(U^2+V^2)^2\right] > 0,
$$
\n
$$
\frac{dH_{n,n}}{d\gamma}\left(\frac{1}{2}\right) = 2r\mathbf{E}\left[U^{2n}V^{2n}\left(\frac{U^2-V^2}{2}\right)^{2r-1}(U^2+V^2)\right] = 0.
$$

Then, $H_{n,n}(\gamma)$ reaches its unique minimum at $\gamma=\frac{1}{2}$ $\frac{1}{2}$. Hence it is sufficient to verify that $H_{n,n}\left(\frac{1}{2}\right)$ $(\frac{1}{2}) = 0$, i.e.,

$$
\sum_{i=0}^{2r} (-1)^i {2r \choose i} \left(\frac{1}{2}\right)_{n+2r-i} \left(\frac{1}{2}\right)_{n+i} = 2^{2r} \left(\frac{1}{2}\right)_n \left(\frac{1}{2}\right)_r \left(\frac{1}{2}\right)_{n+r}.
$$

Wei Sun Concordia University

∢ロ→ ∢母→ ∢∃→ ∢∃→

 QQ

[The symmetric case:](#page-24-0) $H_{n,n}(\gamma) \geq 0$

Lemma Let $l, r \in \mathbb{N}$ satisfying $l \leq r$. Then we have

$$
\sum_{i=0}^{l-1} \frac{\binom{2r}{i}\binom{l-1}{i}}{\binom{2r-l}{i}} = \frac{(2r)!}{2r!r!\binom{2r-l}{r}}.
$$

∍ **Wei Sun Concordia University**

 QQ

 $\mathcal{A} \sqsubseteq \mathcal{F} \rightarrow \mathcal{A} \bigoplus \mathcal{F} \rightarrow \mathcal{A} \sqsubseteq \mathcal{F} \rightarrow \mathcal{A} \sqsubseteq \mathcal{F}$

[The symmetric case:](#page-25-0) $H_{n,n}(\gamma) \geq 0$

$$
\sum_{i=0}^{l-1} \frac{\binom{2r}{i}\binom{l-1}{i}}{\binom{2r-1}{i}}
$$
\n
$$
= \sum_{i=0}^{l-1} \frac{(-2r)_i(1-l)_i}{(l-2r)_i \cdot i!}(-1)^i
$$
\n
$$
= \sum_{i=0}^{\infty} \frac{(-2r)_i(1-l)_i}{(l-2r)_i \cdot i!}(-1)^i
$$
\n
$$
= \lim_{\varepsilon \to 0} \sum_{i=0}^{\infty} \frac{(-2(r+\varepsilon))_i(1-l)_i}{(l-2(r+\varepsilon))_i \cdot i!}(-1)^i
$$
\n
$$
= \lim_{\varepsilon \to 0} \lim_{z \to -1} \sum_{i=0}^{\infty} \frac{(-2(r+\varepsilon))_i(1-l)_i}{(l-2(r+\varepsilon))_i \cdot i!} z^i
$$

 \equiv **Wei Sun Concordia University**

 2990

メロメメ 御き メモメメモド

[The symmetric case:](#page-26-0) $H_{n,n}(\gamma) \geq 0$

$$
= \lim_{\varepsilon \to 0} \lim_{z \to -1} F(-2(r + \varepsilon), 1 - l, (l - 2(r + \varepsilon)); z)
$$

\n
$$
= \lim_{\varepsilon \to 0} \frac{\Gamma(l - 2(r + \varepsilon))\Gamma(1 - (r + \varepsilon))}{\Gamma(1 - 2(r + \varepsilon))\Gamma(l - (r + \varepsilon))}
$$

\n
$$
= \lim_{\varepsilon \to 0} \frac{(-r + \varepsilon)) \cdots (1 - 2(r + \varepsilon))}{(l - (r + \varepsilon) - 1) \cdots (l - 2(r + \varepsilon))}
$$

\n
$$
= \frac{(2r - 1) \cdots r}{(2r - l) \cdots (r + 1 - l)}
$$

\n
$$
= \frac{(2r - 1)!}{(r - 1)! r! {2r - l \choose r}}
$$

\n
$$
= \frac{(2r)!}{2r! r! {2r - l \choose r}}.
$$

Wei Sun Concordia University

 \equiv 990

メロメメ 御き メミメメ ミメー

[The symmetric case:](#page-27-0) $H_{n,n}(\gamma) \geq 0$

Lemma Let $l, r \in \mathbb{N}$ satisfying $l \leq r$. Then we have

$$
\frac{2r!(l-1)!(2r-2l+1)!}{(2r)!(r-l)!} \sum_{i=0}^{l-1} {2r \choose i} {2r-l-i \choose 2r-2l+1} = 1.
$$

Corollary Let $l, r \in \mathbb{N}$ satisfying $l \leq r$. Then we have

$$
\sum_{i=0}^{l-1} \frac{\binom{l-1}{i}}{\binom{2r-i}{l}} = \frac{1}{2\binom{r}{l}}.
$$

Wei Sun Concordia University

 QQ

イロト イ何 トイヨ トイヨ トー

[The symmetric case:](#page-28-0) $H_{n,n}(\gamma) \geq 0$

Proof of identity:

$$
\sum_{i=0}^{2r} (-1)^i \binom{2r}{i} \left(\frac{1}{2}\right)_{n+2r-i} \left(\frac{1}{2}\right)_{n+i} = 2^{2r} \left(\frac{1}{2}\right)_n \left(\frac{1}{2}\right)_r \left(\frac{1}{2}\right)_{n+r}.
$$

Equivalent version:

$$
\left\{\frac{2r!}{(2r)!}\sum_{i=0}^{r-1}(-1)^i\binom{2r}{i}\left(\frac{1}{2}+n+r\right)_{r-i}\left(\frac{1}{2}+n\right)_i\right\}+\frac{(-1)^r}{r!}\left(\frac{1}{2}+n\right)_r=1.
$$

∍ **Wei Sun Concordia University**

 299

メロメメ 御 メメ 君 メメ 君 メ

[The symmetric case:](#page-29-0) $H_{n,n}(\gamma) > 0$

Define an *r*-th degree polynomial *L* by

$$
L(x) = \left\{ \frac{2r!}{(2r)!} \sum_{i=0}^{r-1} (-1)^i \binom{2r}{i} (x+1+r)_{r-i} (x+1)_i \right\} + \left\{ \frac{(-1)^r}{r!} (x+1)_r \right\} - 1.
$$

 $L(0) = 0$. From the previous lemma, we get

$$
L(-l) = 0, \quad l \in \{1, 2, \ldots, r\}.
$$

Hence the r -th degree polynomial L has at least $(r + 1)$ roots, which implies that $L \equiv 0$.

$$
L\left(n-\frac{1}{2}\right)=0.
$$

Wei Sun Concordia University

 Ω

∢ロ→ ∢母→ ∢∃→ ∢∃→

[Introduction](#page-4-0) [Improved Gaussian product inequalities](#page-16-0) [Proof and extension](#page-35-0)

[The asymmetric case:](#page-30-0) $H_{m,n}(\gamma) > 0$

$$
G_{m,n}(\gamma) = \mathbf{E}\left[U^{2m}V^{2n}\left(\gamma(U^2+V^2)-V^2\right)^{2r}\right], \quad \gamma \in \mathbb{R}.
$$

 $G_{m,n}$ is a strictly convex function on $\mathbb R$ and hence reaches its minimum at some $\gamma_m \in (0,1)$ with $\frac{d}{d\gamma} G_{m,n}(\gamma_m) = 0.$

Lemma For
$$
0 < \gamma < 1
$$
,
\n
$$
G_{m,n}(\gamma) = 2^{m+n+2r} \left(\frac{1}{2}\right)_m \left(\frac{1}{2}\right)_{n+2r} F\left(-2r, -m-n-2r, \frac{1}{2}-n-2r; \gamma\right).
$$

Pfaff transformation

$$
F(-2r,\frac{1}{2}+m,\frac{1}{2}-n-2r;-z)=(1+z)^{2r}F(-2r,-m-n-2r,\frac{1}{2}-n-2r;\frac{z}{1+z}).
$$

Wei Sun Concordia University

 Ω

∢ロ→ ∢母→ ∢∃→ ∢∃→

[Introduction](#page-4-0)
 [Improved Gaussian product inequalities](#page-16-0) [Proof and extension](#page-35-0)

○○○○○○○○●○○○

[The asymmetric case:](#page-31-0) $H_{m,n}(\gamma) > 0$

Gauss' contiguous relations of hypergeometric functions. Consider the six functions

$$
F(a \pm 1, b, c; z), \quad F(a, b \pm 1, c; z), \quad F(a, b, c \pm 1; z),
$$

which are called contiguous to $F(a, b, c; z)$.

$$
c(1-z)F - cF(a-1) + (c - b)zF(c+1) = 0,
$$

\n
$$
(b-a)F + aF(a+1) - bF(b+1) = 0,
$$

\n
$$
[c-2b + (b-a)z]F + b(1-z)F(b+1) - (c-b)F(b-1) = 0,
$$

$$
\frac{d}{dz}F(a, b, c; z) = \frac{ab}{c}F(a + 1, b + 1, c + 1; z).
$$

Wei Sun Concordia University

∢ロ→ ∢母→ ∢∃→ ∢∃→

 299

[Introduction](#page-4-0) [Improved Gaussian product inequalities](#page-16-0) [Proof and extension](#page-35-0)

[The asymmetric case:](#page-32-0) $H_{m,n}(\gamma) > 0$

For $0 < \gamma < 1$, define

$$
B_m(\gamma) = F\left(-2r, -m-n-2r, \frac{1}{2}-n-2r; \gamma\right).
$$

*B*_{*m*+1} reaches its minimum at some $\gamma_{m+1} \in (0,1)$ with *d* $\frac{d}{d\gamma}B_{m+1}(\gamma_{m+1})=0.$

Lemma Let $m, n \in \mathbb{N} \cup \{0\}, r \in \mathbb{N}$ and $\gamma_{m+1} \in (0,1)$ be the minimum point of B_{m+1} . Then

$$
B_{m+1}(\gamma_{m+1})=B_m(\gamma_{m+1}).
$$

Wei Sun Concordia University

 Ω

∢ロ→ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

[The asymmetric case:](#page-33-0) $H_{m,n}(\gamma) > 0$

Proof of $H_{m,n}(\gamma) > 0$ for $m > n$:

 $H_{m,n}(\gamma) > 0$ can be written as

$$
G_{m,n}(\gamma) > 2^{m+n+2r} \left(\frac{1}{2}\right)_m \left(\frac{1}{2}\right)_{n+r} \left(\frac{1}{2}\right)_r.
$$

On the other hand,

$$
G_{m,n}(\gamma) = 2^{m+n+2r} \left(\frac{1}{2}\right)_m \left(\frac{1}{2}\right)_{n+2r} B_m(\gamma).
$$

Hence, we need show that

$$
B_m(\gamma) > \left(\frac{1}{2}\right)_{n+r} \left(\frac{1}{2}\right)_r \left(\frac{1}{2}\right)_{n+2r}^{-1} = {n+2r \choose r}^{-1}_{\frac{1}{2}}.
$$

Wei Sun Concordia University

 2990

 $\mathcal{A} \sqsubseteq \mathcal{F} \rightarrow \mathcal{A} \bigoplus \mathcal{F} \rightarrow \mathcal{A} \sqsubseteq \mathcal{F} \rightarrow \mathcal{A} \sqsubseteq \mathcal{F}$

[Introduction](#page-4-0)
 [Improved Gaussian product inequalities](#page-16-0) [Proof and extension](#page-35-0)
 $\circ \circ \circ \circ \circ \circ \circ \circ \circ \circ \bullet$

[The asymmetric case:](#page-34-0) $H_{m,n}(\gamma) > 0$

In the symmetric case we have proved that

$$
B_n(\gamma) > {n+2r \choose r}^{-1}, \quad \gamma \neq \frac{1}{2}.
$$

By the previous lemma, we get

$$
B_{n+1}(\gamma) \geq B_{n+1}(\gamma_{n+1}) = B_n(\gamma_{n+1}) > {n+2r \choose r}_{\frac{1}{2}}^{-1}.
$$

Suppose the inequality holds for $m = k \geq n + 1$. Using the previous lemma again, we get

$$
B_{k+1}(\gamma) \geq B_{k+1}(\gamma_{k+1}) = B_k(\gamma_{k+1}) > {n+2r \choose r}_{\frac{1}{2}},
$$

4 D F

Therefore, the proof is complete by induction.

Wei Sun Concordia University

 Ω

1 [Introduction](#page-4-0)

- **2 [Improved Gaussian product inequalities for special](#page-16-0) [cases](#page-16-0)**
	- **•** [The symmetric case:](#page-23-0) $H_{n,n}(\gamma) > 0$
	- **•** [The asymmetric case:](#page-30-0) $H_{m,n}(\gamma) > 0$

3 [Proof of 3-D Gaussian product inequality and extension](#page-35-0)

つくへ

イロメス 何 メスミメス 手

Lemma Suppose that (*X*, *Y*, *Z*) is a centered Gaussian random vector such that $\alpha X + \beta Y + \gamma Z = 0$ for some constants α, β, γ that are not all zero. Then for any $m, n \in \mathbb{N}$,

 $\mathbf{E}\left[X^{2m}Y^{2m}Z^{2n}\right] > \mathbf{E}[X^{2m}]\mathbf{E}[Y^{2m}]\mathbf{E}[Z^{2n}].$

The proof is based on the improved Gaussian product inequality given above.

Wei Sun Concordia University

 Ω

∢ロ→ ∢母→ ∢∃→ ∢∃→

We assume without loss of generality that $Z = X - Y$ and $E[Z^2] = 1.$

Define

$$
a = \mathbf{E}[XZ], \quad b = \mathbf{E}[YZ],
$$

and

$$
U = X - aZ = Y - bZ, \quad V = \sqrt{|ab|}Z.
$$

To prove the desired inequality, it is sufficient to verify that for $0 \leq i \leq m$

$$
\mathbf{E}\left[V^{2n+2i}U^{2i}(V^2-U^2)^{2m-2i}\right] > {m \choose i}_\frac{1}{2}\mathbf{E}[V^{2n+2i}]\mathbf{E}[U^{2i}]\left\{\mathbf{E}[(V+U)^{2m-2i}]\right\}^2.
$$

Wei Sun Concordia University

∢ロ→ ∢母→ ∢∃→ ∢∃→

 2990

Theorem Let (*X*, *Y*, *Z*) be a 3-dimensional centered Gaussian random vector. Then for any $m, n \in \mathbb{N}$,

 $\mathbf{E}\left[X^{2m} \ Y^{2m} Z^{2n}\right] \geq \mathbf{E}[X^{2m}] \mathbf{E}[Y^{2m}] \mathbf{E}[Z^{2n}].$

Wei Sun Concordia University

∢ロ→ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 2990

Proof. Define

$$
Z_0 = \mathbf{E}[Z|X,Y], \quad Z_1 = Z - Z_0.
$$

Then,

$$
Z^{2n} = (Z_0 + Z_1)^{2n} = \sum_{i=0}^{2n} {2n \choose i} Z_0^{2n-i} Z_1^i.
$$

Note that Z_1 is independent of X, Y . Hence

$$
\mathbf{E}\left[Z_0^{2n-i}Z_1^i|X,Y\right]=Z_0^{2n-i}\mathbf{E}\left[Z_1^i\right],
$$

which is equal to zero for odd *i*.

$$
\mathbf{E}\left[Z^{2n}|X,Y\right] = \sum_{i=0}^{n} {2n \choose 2i} Z_0^{2n-2i} \mathbf{E}\left[Z_1^{2i}\right].
$$

Wei Sun Concordia University

ヨメ イヨ -41

← ロ ≯ ← イ 同 →

 QQ

Note that $Z_0 = \alpha X + \beta Y$ holds for some $\alpha, \beta \in \mathbb{R}$. Then, it follow from the previous lemma that

$$
\mathbf{E}\left[X^{2m}Y^{2m}Z_0^{2n-2i}\right] \geq \mathbf{E}[X^{2m}]\mathbf{E}[Y^{2m}]\mathbf{E}[Z_0^{2n-2i}].
$$

Thus,

E

$$
\begin{array}{rcl}\n\mathbf{E}\left[X^{2m} Y^{2m} Z^{2n}\right] & = & \mathbf{E}\left[\mathbf{E}\left[Z^{2n} | X, Y\right] \cdot X^{2m} Y^{2m}\right] \\
& = & \sum_{i=0}^{n} \binom{2n}{2i} \mathbf{E}\left[X^{2m} Y^{2m} Z_{0}^{2n-2i}\right] \mathbf{E}[Z_{1}^{2i}] \\
& \geq & \sum_{i=0}^{n} \binom{2n}{2i} \mathbf{E}[X^{2m}] \mathbf{E}[Y^{2m}] \mathbf{E}[Z_{0}^{2n-2i}] \mathbf{E}[Z_{1}^{2i}] \\
& = & \mathbf{E}[X^{2m}] \mathbf{E}[Y^{2m}] \sum_{i=0}^{n} \binom{2n}{2i} \mathbf{E}\left[Z_{0}^{2n-2i} Z_{1}^{2i}\right] \\
& = & \mathbf{E}[X^{2m}] \mathbf{E}[Y^{2m}] \mathbf{E}\left[(Z_{0} + Z_{1})^{2n}\right].\n\end{array}
$$

Wei Sun Concordia University

 QQ

イロメ イ何 メメミメイヨメ